MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsn Structured version   Unicode version

Theorem xpsn 5913
Description: The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
xpsn.1  |-  A  e. 
_V
xpsn.2  |-  B  e. 
_V
Assertion
Ref Expression
xpsn  |-  ( { A }  X.  { B } )  =  { <. A ,  B >. }

Proof of Theorem xpsn
StepHypRef Expression
1 xpsn.1 . 2  |-  A  e. 
_V
2 xpsn.2 . 2  |-  B  e. 
_V
3 xpsng 5912 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A }  X.  { B } )  =  { <. A ,  B >. } )
41, 2, 3mp2an 655 1  |-  ( { A }  X.  { B } )  =  { <. A ,  B >. }
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1726   _Vcvv 2958   {csn 3816   <.cop 3819    X. cxp 4879
This theorem is referenced by:  dfmpt  5914  fpar  6453  mapsnconst  7062  ixpsnf1o  7105  cda1dif  8061  infcda1  8078  s1co  11807  xpsc0  13790  xpsc1  13791  txdis  17669  pt1hmeo  17843  utop2nei  18285  utop3cls  18286  imasdsf1olem  18408  ex-xp  21749  grposn  21808  ablosn  21940  dib0  32036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464
  Copyright terms: Public domain W3C validator