MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspwOLD Structured version   Unicode version

Theorem xpsspwOLD 4988
Description: A cross product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpsspwOLD  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )

Proof of Theorem xpsspwOLD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4984 . 2  |-  Rel  ( A  X.  B )
2 opelxp 4909 . . 3  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
3 snssi 3943 . . . . . . . 8  |-  ( x  e.  A  ->  { x }  C_  A )
4 ssun3 3513 . . . . . . . 8  |-  ( { x }  C_  A  ->  { x }  C_  ( A  u.  B
) )
53, 4syl 16 . . . . . . 7  |-  ( x  e.  A  ->  { x }  C_  ( A  u.  B ) )
6 snex 4406 . . . . . . . 8  |-  { x }  e.  _V
76elpw 3806 . . . . . . 7  |-  ( { x }  e.  ~P ( A  u.  B
)  <->  { x }  C_  ( A  u.  B
) )
85, 7sylibr 205 . . . . . 6  |-  ( x  e.  A  ->  { x }  e.  ~P ( A  u.  B )
)
98adantr 453 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x }  e.  ~P ( A  u.  B
) )
10 df-pr 3822 . . . . . . 7  |-  { x ,  y }  =  ( { x }  u.  { y } )
11 snssi 3943 . . . . . . . . . 10  |-  ( y  e.  B  ->  { y }  C_  B )
12 ssun4 3514 . . . . . . . . . 10  |-  ( { y }  C_  B  ->  { y }  C_  ( A  u.  B
) )
1311, 12syl 16 . . . . . . . . 9  |-  ( y  e.  B  ->  { y }  C_  ( A  u.  B ) )
145, 13anim12i 551 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) ) )
15 unss 3522 . . . . . . . 8  |-  ( ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) )  <->  ( {
x }  u.  {
y } )  C_  ( A  u.  B
) )
1614, 15sylib 190 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  u.  { y } ) 
C_  ( A  u.  B ) )
1710, 16syl5eqss 3393 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  C_  ( A  u.  B ) )
18 zfpair2 4405 . . . . . . 7  |-  { x ,  y }  e.  _V
1918elpw 3806 . . . . . 6  |-  ( { x ,  y }  e.  ~P ( A  u.  B )  <->  { x ,  y }  C_  ( A  u.  B
) )
2017, 19sylibr 205 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  e.  ~P ( A  u.  B )
)
219, 20jca 520 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  e.  ~P ( A  u.  B )  /\  {
x ,  y }  e.  ~P ( A  u.  B ) ) )
22 prex 4407 . . . . . 6  |-  { {
x } ,  {
x ,  y } }  e.  _V
2322elpw 3806 . . . . 5  |-  ( { { x } ,  { x ,  y } }  e.  ~P ~P ( A  u.  B
)  <->  { { x } ,  { x ,  y } }  C_  ~P ( A  u.  B
) )
24 vex 2960 . . . . . . 7  |-  x  e. 
_V
25 vex 2960 . . . . . . 7  |-  y  e. 
_V
2624, 25dfop 3984 . . . . . 6  |-  <. x ,  y >.  =  { { x } ,  { x ,  y } }
2726eleq1i 2500 . . . . 5  |-  ( <.
x ,  y >.  e.  ~P ~P ( A  u.  B )  <->  { { x } ,  { x ,  y } }  e.  ~P ~P ( A  u.  B ) )
286, 18prss 3953 . . . . 5  |-  ( ( { x }  e.  ~P ( A  u.  B
)  /\  { x ,  y }  e.  ~P ( A  u.  B
) )  <->  { { x } ,  { x ,  y } }  C_ 
~P ( A  u.  B ) )
2923, 27, 283bitr4ri 271 . . . 4  |-  ( ( { x }  e.  ~P ( A  u.  B
)  /\  { x ,  y }  e.  ~P ( A  u.  B
) )  <->  <. x ,  y >.  e.  ~P ~P ( A  u.  B
) )
3021, 29sylib 190 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  ~P ~P ( A  u.  B ) )
312, 30sylbi 189 . 2  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ~P ~P ( A  u.  B
) )
321, 31relssi 4968 1  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    e. wcel 1726    u. cun 3319    C_ wss 3321   ~Pcpw 3800   {csn 3815   {cpr 3816   <.cop 3818    X. cxp 4877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-opab 4268  df-xp 4885  df-rel 4886
  Copyright terms: Public domain W3C validator