MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpwdomg Unicode version

Theorem xpwdomg 7487
Description: Weak dominance of a cross product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
xpwdomg  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) )

Proof of Theorem xpwdomg
Dummy variables  a 
b  c  f  g  x  y  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 7485 . . 3  |-  ( A  ~<_*  B  ->  E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b
) )
21adantr 452 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )
3 brwdom3i 7485 . . 3  |-  ( C  ~<_*  D  ->  E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d
) )
43adantl 453 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )
5 relwdom 7468 . . . . . . . . . 10  |-  Rel  ~<_*
65brrelexi 4859 . . . . . . . . 9  |-  ( A  ~<_*  B  ->  A  e.  _V )
75brrelexi 4859 . . . . . . . . 9  |-  ( C  ~<_*  D  ->  C  e.  _V )
8 xpexg 4930 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  X.  C
)  e.  _V )
96, 7, 8syl2an 464 . . . . . . . 8  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A  X.  C )  e.  _V )
109adantr 452 . . . . . . 7  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  ->  ( A  X.  C )  e.  _V )
115brrelex2i 4860 . . . . . . . . 9  |-  ( A  ~<_*  B  ->  B  e.  _V )
125brrelex2i 4860 . . . . . . . . 9  |-  ( C  ~<_*  D  ->  D  e.  _V )
13 xpexg 4930 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( B  X.  D
)  e.  _V )
1411, 12, 13syl2an 464 . . . . . . . 8  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( B  X.  D )  e.  _V )
1514adantr 452 . . . . . . 7  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  ->  ( B  X.  D )  e.  _V )
16 pm3.2 435 . . . . . . . . . . . . . . . 16  |-  ( E. b  e.  B  a  =  ( f `  b )  ->  ( E. d  e.  D  c  =  ( g `  d )  ->  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
1716ralimdv 2729 . . . . . . . . . . . . . . 15  |-  ( E. b  e.  B  a  =  ( f `  b )  ->  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
1817com12 29 . . . . . . . . . . . . . 14  |-  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( E. b  e.  B  a  =  ( f `  b )  ->  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
1918ralimdv 2729 . . . . . . . . . . . . 13  |-  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  A. a  e.  A  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
2019impcom 420 . . . . . . . . . . . 12  |-  ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  ->  A. a  e.  A  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) )
21 pm3.2 435 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( f `  b )  ->  (
c  =  ( g `
 d )  -> 
( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2221reximdv 2761 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( f `  b )  ->  ( E. d  e.  D  c  =  ( g `  d )  ->  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2322com12 29 . . . . . . . . . . . . . . . 16  |-  ( E. d  e.  D  c  =  ( g `  d )  ->  (
a  =  ( f `
 b )  ->  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2423reximdv 2761 . . . . . . . . . . . . . . 15  |-  ( E. d  e.  D  c  =  ( g `  d )  ->  ( E. b  e.  B  a  =  ( f `  b )  ->  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2524impcom 420 . . . . . . . . . . . . . 14  |-  ( ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) )  ->  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
2625ralimi 2725 . . . . . . . . . . . . 13  |-  ( A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) )  ->  A. c  e.  C  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
2726ralimi 2725 . . . . . . . . . . . 12  |-  ( A. a  e.  A  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) )  ->  A. a  e.  A  A. c  e.  C  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
2820, 27syl 16 . . . . . . . . . . 11  |-  ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  ->  A. a  e.  A  A. c  e.  C  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
29 eqeq1 2394 . . . . . . . . . . . . . 14  |-  ( x  =  <. a ,  c
>.  ->  ( x  = 
<. ( f `  b
) ,  ( g `
 d ) >.  <->  <.
a ,  c >.  =  <. ( f `  b ) ,  ( g `  d )
>. ) )
30 vex 2903 . . . . . . . . . . . . . . 15  |-  a  e. 
_V
31 vex 2903 . . . . . . . . . . . . . . 15  |-  c  e. 
_V
3230, 31opth 4377 . . . . . . . . . . . . . 14  |-  ( <.
a ,  c >.  =  <. ( f `  b ) ,  ( g `  d )
>. 
<->  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
3329, 32syl6bb 253 . . . . . . . . . . . . 13  |-  ( x  =  <. a ,  c
>.  ->  ( x  = 
<. ( f `  b
) ,  ( g `
 d ) >.  <->  ( a  =  ( f `
 b )  /\  c  =  ( g `  d ) ) ) )
34332rexbidv 2693 . . . . . . . . . . . 12  |-  ( x  =  <. a ,  c
>.  ->  ( E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.  <->  E. b  e.  B  E. d  e.  D  (
a  =  ( f `
 b )  /\  c  =  ( g `  d ) ) ) )
3534ralxp 4957 . . . . . . . . . . 11  |-  ( A. x  e.  ( A  X.  C ) E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.  <->  A. a  e.  A  A. c  e.  C  E. b  e.  B  E. d  e.  D  (
a  =  ( f `
 b )  /\  c  =  ( g `  d ) ) )
3628, 35sylibr 204 . . . . . . . . . 10  |-  ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  ->  A. x  e.  ( A  X.  C ) E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b ) ,  ( g `  d )
>. )
3736r19.21bi 2748 . . . . . . . . 9  |-  ( ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  /\  x  e.  ( A  X.  C
) )  ->  E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.
)
38 vex 2903 . . . . . . . . . . . . . 14  |-  b  e. 
_V
39 vex 2903 . . . . . . . . . . . . . 14  |-  d  e. 
_V
4038, 39op1std 6297 . . . . . . . . . . . . 13  |-  ( y  =  <. b ,  d
>.  ->  ( 1st `  y
)  =  b )
4140fveq2d 5673 . . . . . . . . . . . 12  |-  ( y  =  <. b ,  d
>.  ->  ( f `  ( 1st `  y ) )  =  ( f `
 b ) )
4238, 39op2ndd 6298 . . . . . . . . . . . . 13  |-  ( y  =  <. b ,  d
>.  ->  ( 2nd `  y
)  =  d )
4342fveq2d 5673 . . . . . . . . . . . 12  |-  ( y  =  <. b ,  d
>.  ->  ( g `  ( 2nd `  y ) )  =  ( g `
 d ) )
4441, 43opeq12d 3935 . . . . . . . . . . 11  |-  ( y  =  <. b ,  d
>.  ->  <. ( f `  ( 1st `  y ) ) ,  ( g `
 ( 2nd `  y
) ) >.  =  <. ( f `  b ) ,  ( g `  d ) >. )
4544eqeq2d 2399 . . . . . . . . . 10  |-  ( y  =  <. b ,  d
>.  ->  ( x  = 
<. ( f `  ( 1st `  y ) ) ,  ( g `  ( 2nd `  y ) ) >.  <->  x  =  <. ( f `  b ) ,  ( g `  d ) >. )
)
4645rexxp 4958 . . . . . . . . 9  |-  ( E. y  e.  ( B  X.  D ) x  =  <. ( f `  ( 1st `  y ) ) ,  ( g `
 ( 2nd `  y
) ) >.  <->  E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.
)
4737, 46sylibr 204 . . . . . . . 8  |-  ( ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  /\  x  e.  ( A  X.  C
) )  ->  E. y  e.  ( B  X.  D
) x  =  <. ( f `  ( 1st `  y ) ) ,  ( g `  ( 2nd `  y ) )
>. )
4847adantll 695 . . . . . . 7  |-  ( ( ( ( A  ~<_*  B  /\  C  ~<_*  D )  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  /\  x  e.  ( A  X.  C ) )  ->  E. y  e.  ( B  X.  D
) x  =  <. ( f `  ( 1st `  y ) ) ,  ( g `  ( 2nd `  y ) )
>. )
4910, 15, 48wdom2d 7482 . . . . . 6  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) )
5049expr 599 . . . . 5  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b
) )  ->  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D ) ) )
5150exlimdv 1643 . . . 4  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b
) )  ->  ( E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) ) )
5251ex 424 . . 3  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  ( E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) ) ) )
5352exlimdv 1643 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  ( E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) ) ) )
542, 4, 53mp2d 43 1  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651   _Vcvv 2900   <.cop 3761   class class class wbr 4154    X. cxp 4817   ` cfv 5395   1stc1st 6287   2ndc2nd 6288    ~<_* cwdom 7459
This theorem is referenced by:  hsmexlem3  8242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-1st 6289  df-2nd 6290  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-wdom 7461
  Copyright terms: Public domain W3C validator