MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmopn Unicode version

Theorem xrsmopn 18804
Description: The metric on the extended reals generates a topology, but this does not match the order topology on  RR*; for example  {  +oo } is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xrsxmet.1  |-  D  =  ( dist `  RR* s
)
xrsmopn.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
xrsmopn  |-  (ordTop `  <_  )  C_  J

Proof of Theorem xrsmopn
Dummy variables  x  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4011 . . . 4  |-  ( x  e.  (ordTop `  <_  )  ->  x  C_  U. (ordTop ` 
<_  ) )
2 letopuni 17233 . . . 4  |-  RR*  =  U. (ordTop `  <_  )
31, 2syl6sseqr 3363 . . 3  |-  ( x  e.  (ordTop `  <_  )  ->  x  C_  RR* )
4 eqid 2412 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
54rexmet 18783 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( * Met `  RR )
65a1i 11 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  (
( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( * Met `  RR ) )
7 letop 17232 . . . . . . . . 9  |-  (ordTop `  <_  )  e.  Top
8 reex 9045 . . . . . . . . 9  |-  RR  e.  _V
9 elrestr 13619 . . . . . . . . 9  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  RR  e.  _V  /\  x  e.  (ordTop `  <_  ) )  -> 
( x  i^i  RR )  e.  ( (ordTop ` 
<_  )t  RR ) )
107, 8, 9mp3an12 1269 . . . . . . . 8  |-  ( x  e.  (ordTop `  <_  )  ->  ( x  i^i 
RR )  e.  ( (ordTop `  <_  )t  RR ) )
1110ad2antrr 707 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  (
x  i^i  RR )  e.  ( (ordTop `  <_  )t  RR ) )
12 elin 3498 . . . . . . . . 9  |-  ( y  e.  ( x  i^i 
RR )  <->  ( y  e.  x  /\  y  e.  RR ) )
1312biimpri 198 . . . . . . . 8  |-  ( ( y  e.  x  /\  y  e.  RR )  ->  y  e.  ( x  i^i  RR ) )
1413adantll 695 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  y  e.  ( x  i^i  RR ) )
15 eqid 2412 . . . . . . . . . 10  |-  ( (ordTop `  <_  )t  RR )  =  ( (ordTop `  <_  )t  RR )
1615xrtgioo 18798 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( (ordTop `  <_  )t  RR )
17 eqid 2412 . . . . . . . . . 10  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
184, 17tgioo 18788 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
1916, 18eqtr3i 2434 . . . . . . . 8  |-  ( (ordTop `  <_  )t  RR )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
2019mopni2 18484 . . . . . . 7  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( * Met `  RR )  /\  (
x  i^i  RR )  e.  ( (ordTop `  <_  )t  RR )  /\  y  e.  ( x  i^i  RR ) )  ->  E. r  e.  RR+  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR ) )
216, 11, 14, 20syl3anc 1184 . . . . . 6  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  E. r  e.  RR+  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR ) )
22 xrsxmet.1 . . . . . . . . . . . . 13  |-  D  =  ( dist `  RR* s
)
2322xrsxmet 18801 . . . . . . . . . . . 12  |-  D  e.  ( * Met `  RR* )
2423a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  D  e.  ( * Met `  RR* )
)
25 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  y  e.  RR )
26 ressxr 9093 . . . . . . . . . . . . 13  |-  RR  C_  RR*
27 dfss1 3513 . . . . . . . . . . . . 13  |-  ( RR  C_  RR*  <->  ( RR*  i^i  RR )  =  RR )
2826, 27mpbi 200 . . . . . . . . . . . 12  |-  ( RR*  i^i 
RR )  =  RR
2925, 28syl6eleqr 2503 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  y  e.  (
RR*  i^i  RR )
)
30 rpxr 10583 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e. 
RR* )
3130adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  r  e.  RR* )
3222xrsdsre 18802 . . . . . . . . . . . . 13  |-  ( D  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
3332eqcomi 2416 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( D  |`  ( RR  X.  RR ) )
3433blres 18422 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  RR* )  /\  y  e.  ( RR*  i^i  RR )  /\  r  e.  RR* )  -> 
( y ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( y (
ball `  D )
r )  i^i  RR ) )
3524, 29, 31, 34syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( y ( ball `  D
) r )  i^i 
RR ) )
3622xrsblre 18803 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  r  e.  RR* )  -> 
( y ( ball `  D ) r ) 
C_  RR )
3730, 36sylan2 461 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  r  e.  RR+ )  -> 
( y ( ball `  D ) r ) 
C_  RR )
3837adantll 695 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( y (
ball `  D )
r )  C_  RR )
39 df-ss 3302 . . . . . . . . . . 11  |-  ( ( y ( ball `  D
) r )  C_  RR 
<->  ( ( y (
ball `  D )
r )  i^i  RR )  =  ( y
( ball `  D )
r ) )
4038, 39sylib 189 . . . . . . . . . 10  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  D
) r )  i^i 
RR )  =  ( y ( ball `  D
) r ) )
4135, 40eqtrd 2444 . . . . . . . . 9  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( y (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( y ( ball `  D
) r ) )
4241sseq1d 3343 . . . . . . . 8  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR )  <->  ( y
( ball `  D )
r )  C_  (
x  i^i  RR )
) )
43 inss1 3529 . . . . . . . . 9  |-  ( x  i^i  RR )  C_  x
44 sstr 3324 . . . . . . . . 9  |-  ( ( ( y ( ball `  D ) r ) 
C_  ( x  i^i 
RR )  /\  (
x  i^i  RR )  C_  x )  ->  (
y ( ball `  D
) r )  C_  x )
4543, 44mpan2 653 . . . . . . . 8  |-  ( ( y ( ball `  D
) r )  C_  ( x  i^i  RR )  ->  ( y (
ball `  D )
r )  C_  x
)
4642, 45syl6bi 220 . . . . . . 7  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  /\  r  e.  RR+ )  ->  ( ( y ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR )  ->  (
y ( ball `  D
) r )  C_  x ) )
4746reximdva 2786 . . . . . 6  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  ( E. r  e.  RR+  (
y ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  ( x  i^i  RR )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) )
4821, 47mpd 15 . . . . 5  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  y  e.  RR )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
)
49 1rp 10580 . . . . . 6  |-  1  e.  RR+
5023a1i 11 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  D  e.  ( * Met `  RR* )
)
513sselda 3316 . . . . . . . . . 10  |-  ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  ->  y  e.  RR* )
5251adantr 452 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  y  e.  RR* )
53 rpxr 10583 . . . . . . . . . 10  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
5449, 53mp1i 12 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  1  e.  RR* )
55 elbl 18379 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  RR* )  /\  y  e.  RR*  /\  1  e.  RR* )  ->  (
z  e.  ( y ( ball `  D
) 1 )  <->  ( z  e.  RR*  /\  ( y D z )  <  1 ) ) )
5650, 52, 54, 55syl3anc 1184 . . . . . . . 8  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( z  e.  ( y ( ball `  D
) 1 )  <->  ( z  e.  RR*  /\  ( y D z )  <  1 ) ) )
57 simp2 958 . . . . . . . . . 10  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  -.  y  e.  RR )
5823a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  D  e.  ( * Met `  RR* )
)
59513ad2ant1 978 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  y  e.  RR* )
6059adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  y  e.  RR* )
61 simpl3l 1012 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  z  e.  RR* )
62 xmetcl 18322 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( * Met `  RR* )  /\  y  e.  RR*  /\  z  e.  RR* )  ->  (
y D z )  e.  RR* )
6358, 60, 61, 62syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  e.  RR* )
64 1re 9054 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
6564a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  1  e.  RR )
66 xmetge0 18335 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( * Met `  RR* )  /\  y  e.  RR*  /\  z  e.  RR* )  ->  0  <_  ( y D z ) )
6758, 60, 61, 66syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  0  <_  ( y D z ) )
68 simpl3r 1013 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  <  1 )
6949, 53ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR*
70 xrltle 10706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y D z )  e.  RR*  /\  1  e.  RR* )  ->  (
( y D z )  <  1  -> 
( y D z )  <_  1 ) )
7163, 69, 70sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
( y D z )  <  1  -> 
( y D z )  <_  1 ) )
7268, 71mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  <_  1 )
73 xrrege0 10726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y D z )  e.  RR*  /\  1  e.  RR )  /\  ( 0  <_ 
( y D z )  /\  ( y D z )  <_ 
1 ) )  -> 
( y D z )  e.  RR )
7463, 65, 67, 72, 73syl22anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y D z )  e.  RR )
75 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  y  =/=  z )
7622xrsdsreclb 16708 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR*  /\  z  e.  RR*  /\  y  =/=  z )  ->  (
( y D z )  e.  RR  <->  ( y  e.  RR  /\  z  e.  RR ) ) )
7760, 61, 75, 76syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
( y D z )  e.  RR  <->  ( y  e.  RR  /\  z  e.  RR ) ) )
7874, 77mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  (
y  e.  RR  /\  z  e.  RR )
)
7978simpld 446 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  ( z  e.  RR*  /\  ( y D z )  <  1 ) )  /\  y  =/=  z )  ->  y  e.  RR )
8079ex 424 . . . . . . . . . . . 12  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( y  =/=  z  ->  y  e.  RR ) )
8180necon1bd 2643 . . . . . . . . . . 11  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( -.  y  e.  RR  ->  y  =  z ) )
82 simp1r 982 . . . . . . . . . . . 12  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  y  e.  x
)
83 elequ1 1724 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  e.  x  <->  z  e.  x ) )
8482, 83syl5ibcom 212 . . . . . . . . . . 11  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( y  =  z  ->  z  e.  x ) )
8581, 84syld 42 . . . . . . . . . 10  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  ( -.  y  e.  RR  ->  z  e.  x ) )
8657, 85mpd 15 . . . . . . . . 9  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR  /\  (
z  e.  RR*  /\  (
y D z )  <  1 ) )  ->  z  e.  x
)
87863expia 1155 . . . . . . . 8  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( ( z  e. 
RR*  /\  ( y D z )  <  1 )  ->  z  e.  x ) )
8856, 87sylbid 207 . . . . . . 7  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( z  e.  ( y ( ball `  D
) 1 )  -> 
z  e.  x ) )
8988ssrdv 3322 . . . . . 6  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  ( y ( ball `  D ) 1 ) 
C_  x )
90 oveq2 6056 . . . . . . . 8  |-  ( r  =  1  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) 1 ) )
9190sseq1d 3343 . . . . . . 7  |-  ( r  =  1  ->  (
( y ( ball `  D ) r ) 
C_  x  <->  ( y
( ball `  D )
1 )  C_  x
) )
9291rspcev 3020 . . . . . 6  |-  ( ( 1  e.  RR+  /\  (
y ( ball `  D
) 1 )  C_  x )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
)
9349, 89, 92sylancr 645 . . . . 5  |-  ( ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  /\  -.  y  e.  RR )  ->  E. r  e.  RR+  ( y ( ball `  D ) r ) 
C_  x )
9448, 93pm2.61dan 767 . . . 4  |-  ( ( x  e.  (ordTop `  <_  )  /\  y  e.  x )  ->  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
)
9594ralrimiva 2757 . . 3  |-  ( x  e.  (ordTop `  <_  )  ->  A. y  e.  x  E. r  e.  RR+  (
y ( ball `  D
) r )  C_  x )
96 xrsmopn.1 . . . . 5  |-  J  =  ( MetOpen `  D )
9796elmopn2 18436 . . . 4  |-  ( D  e.  ( * Met ` 
RR* )  ->  (
x  e.  J  <->  ( x  C_ 
RR*  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) ) )
9823, 97ax-mp 8 . . 3  |-  ( x  e.  J  <->  ( x  C_ 
RR*  /\  A. y  e.  x  E. r  e.  RR+  ( y (
ball `  D )
r )  C_  x
) )
993, 95, 98sylanbrc 646 . 2  |-  ( x  e.  (ordTop `  <_  )  ->  x  e.  J
)
10099ssriv 3320 1  |-  (ordTop `  <_  )  C_  J
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   E.wrex 2675   _Vcvv 2924    i^i cin 3287    C_ wss 3288   U.cuni 3983   class class class wbr 4180    X. cxp 4843   ran crn 4846    |` cres 4847    o. ccom 4849   ` cfv 5421  (class class class)co 6048   RRcr 8953   0cc0 8954   1c1 8955   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255   RR+crp 10576   (,)cioo 10880   abscabs 12002   distcds 13501   ↾t crest 13611   topGenctg 13628  ordTopcordt 13684   RR* scxrs 13685   * Metcxmt 16649   ballcbl 16651   MetOpencmopn 16654   Topctop 16921
This theorem is referenced by:  xmetdcn  18830
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-ec 6874  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ioc 10885  df-ico 10886  df-icc 10887  df-fz 11008  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-plusg 13505  df-mulr 13506  df-tset 13511  df-ple 13512  df-ds 13514  df-rest 13613  df-topgen 13630  df-ordt 13688  df-xrs 13689  df-ps 14592  df-tsr 14593  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-top 16926  df-bases 16928  df-topon 16929
  Copyright terms: Public domain W3C validator