MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4b Unicode version

Theorem yonedalem4b 14260
Description: Lemma for yoneda 14267. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y  |-  Y  =  (Yon `  C )
yoneda.b  |-  B  =  ( Base `  C
)
yoneda.1  |-  .1.  =  ( Id `  C )
yoneda.o  |-  O  =  (oppCat `  C )
yoneda.s  |-  S  =  ( SetCat `  U )
yoneda.t  |-  T  =  ( SetCat `  V )
yoneda.q  |-  Q  =  ( O FuncCat  S )
yoneda.h  |-  H  =  (HomF
`  Q )
yoneda.r  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
yoneda.e  |-  E  =  ( O evalF  S )
yoneda.z  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
yoneda.c  |-  ( ph  ->  C  e.  Cat )
yoneda.w  |-  ( ph  ->  V  e.  W )
yoneda.u  |-  ( ph  ->  ran  (  Homf  `  C ) 
C_  U )
yoneda.v  |-  ( ph  ->  ( ran  (  Homf  `  Q )  u.  U
)  C_  V )
yonedalem21.f  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
yonedalem21.x  |-  ( ph  ->  X  e.  B )
yonedalem4.n  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
yonedalem4.p  |-  ( ph  ->  A  e.  ( ( 1st `  F ) `
 X ) )
yonedalem4b.p  |-  ( ph  ->  P  e.  B )
yonedalem4b.g  |-  ( ph  ->  G  e.  ( P (  Hom  `  C
) X ) )
Assertion
Ref Expression
yonedalem4b  |-  ( ph  ->  ( ( ( ( F N X ) `
 A ) `  P ) `  G
)  =  ( ( ( X ( 2nd `  F ) P ) `
 G ) `  A ) )
Distinct variable groups:    f, g, x, y,  .1.    u, g, A, y    u, f, C, g, x, y   
f, E, g, u, y    f, F, g, u, x, y    B, f, g, u, x, y   
f, G, g, x, y    f, O, g, u, x, y    S, f, g, u, x, y    Q, f, g, u, x    T, f, g, u, y    P, f, g, x, y    ph, f, g, u, x, y    u, R    f, Y, g, u, x, y   
f, Z, g, u, x, y    f, X, g, u, x, y
Allowed substitution hints:    A( x, f)    P( u)    Q( y)    R( x, y, f, g)    T( x)    U( x, y, u, f, g)    .1. ( u)    E( x)    G( u)    H( x, y, u, f, g)    N( x, y, u, f, g)    V( x, y, u, f, g)    W( x, y, u, f, g)

Proof of Theorem yonedalem4b
StepHypRef Expression
1 yoneda.y . . . . 5  |-  Y  =  (Yon `  C )
2 yoneda.b . . . . 5  |-  B  =  ( Base `  C
)
3 yoneda.1 . . . . 5  |-  .1.  =  ( Id `  C )
4 yoneda.o . . . . 5  |-  O  =  (oppCat `  C )
5 yoneda.s . . . . 5  |-  S  =  ( SetCat `  U )
6 yoneda.t . . . . 5  |-  T  =  ( SetCat `  V )
7 yoneda.q . . . . 5  |-  Q  =  ( O FuncCat  S )
8 yoneda.h . . . . 5  |-  H  =  (HomF
`  Q )
9 yoneda.r . . . . 5  |-  R  =  ( ( Q  X.c  O
) FuncCat  T )
10 yoneda.e . . . . 5  |-  E  =  ( O evalF  S )
11 yoneda.z . . . . 5  |-  Z  =  ( H  o.func  ( ( <. ( 1st `  Y
) , tpos  ( 2nd `  Y ) >.  o.func  ( Q  2ndF  O ) ) ⟨,⟩F  ( Q  1stF  O )
) )
12 yoneda.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
13 yoneda.w . . . . 5  |-  ( ph  ->  V  e.  W )
14 yoneda.u . . . . 5  |-  ( ph  ->  ran  (  Homf  `  C ) 
C_  U )
15 yoneda.v . . . . 5  |-  ( ph  ->  ( ran  (  Homf  `  Q )  u.  U
)  C_  V )
16 yonedalem21.f . . . . 5  |-  ( ph  ->  F  e.  ( O 
Func  S ) )
17 yonedalem21.x . . . . 5  |-  ( ph  ->  X  e.  B )
18 yonedalem4.n . . . . 5  |-  N  =  ( f  e.  ( O  Func  S ) ,  x  e.  B  |->  ( u  e.  ( ( 1st `  f
) `  x )  |->  ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) x )  |->  ( ( ( x ( 2nd `  f ) y ) `  g
) `  u )
) ) ) )
19 yonedalem4.p . . . . 5  |-  ( ph  ->  A  e.  ( ( 1st `  F ) `
 X ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 14259 . . . 4  |-  ( ph  ->  ( ( F N X ) `  A
)  =  ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) )
2120fveq1d 5634 . . 3  |-  ( ph  ->  ( ( ( F N X ) `  A ) `  P
)  =  ( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) `  P
) )
2221fveq1d 5634 . 2  |-  ( ph  ->  ( ( ( ( F N X ) `
 A ) `  P ) `  G
)  =  ( ( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) `  P
) `  G )
)
23 eqidd 2367 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) )  =  ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) )
24 yonedalem4b.p . . . 4  |-  ( ph  ->  P  e.  B )
25 ovex 6006 . . . . . 6  |-  ( y (  Hom  `  C
) X )  e. 
_V
2625mptex 5866 . . . . 5  |-  ( g  e.  ( y (  Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) )  e. 
_V
2726a1i 10 . . . 4  |-  ( (
ph  /\  y  =  P )  ->  (
g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
)  e.  _V )
28 yonedalem4b.g . . . . . . 7  |-  ( ph  ->  G  e.  ( P (  Hom  `  C
) X ) )
2928adantr 451 . . . . . 6  |-  ( (
ph  /\  y  =  P )  ->  G  e.  ( P (  Hom  `  C ) X ) )
30 simpr 447 . . . . . . 7  |-  ( (
ph  /\  y  =  P )  ->  y  =  P )
3130oveq1d 5996 . . . . . 6  |-  ( (
ph  /\  y  =  P )  ->  (
y (  Hom  `  C
) X )  =  ( P (  Hom  `  C ) X ) )
3229, 31eleqtrrd 2443 . . . . 5  |-  ( (
ph  /\  y  =  P )  ->  G  e.  ( y (  Hom  `  C ) X ) )
33 fvex 5646 . . . . . 6  |-  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A )  e.  _V
3433a1i 10 . . . . 5  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  (
( ( X ( 2nd `  F ) y ) `  g
) `  A )  e.  _V )
35 simplr 731 . . . . . . . 8  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  y  =  P )
3635oveq2d 5997 . . . . . . 7  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  ( X ( 2nd `  F
) y )  =  ( X ( 2nd `  F ) P ) )
37 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  g  =  G )
3836, 37fveq12d 5638 . . . . . 6  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  (
( X ( 2nd `  F ) y ) `
 g )  =  ( ( X ( 2nd `  F ) P ) `  G
) )
3938fveq1d 5634 . . . . 5  |-  ( ( ( ph  /\  y  =  P )  /\  g  =  G )  ->  (
( ( X ( 2nd `  F ) y ) `  g
) `  A )  =  ( ( ( X ( 2nd `  F
) P ) `  G ) `  A
) )
4032, 34, 39fvmptdv2 5720 . . . 4  |-  ( (
ph  /\  y  =  P )  ->  (
( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) ) `  P )  =  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
)  ->  ( (
( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) ) `  P
) `  G )  =  ( ( ( X ( 2nd `  F
) P ) `  G ) `  A
) ) )
41 nfmpt1 4211 . . . 4  |-  F/_ y
( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) )
42 nffvmpt1 5640 . . . . . 6  |-  F/_ y
( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) ) `  P )
43 nfcv 2502 . . . . . 6  |-  F/_ y G
4442, 43nffv 5639 . . . . 5  |-  F/_ y
( ( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) `
 P ) `  G )
4544nfeq1 2511 . . . 4  |-  F/ y ( ( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) `
 P ) `  G )  =  ( ( ( X ( 2nd `  F ) P ) `  G
) `  A )
4624, 27, 40, 41, 45fvmptdf 5718 . . 3  |-  ( ph  ->  ( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) )  =  ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C
) X )  |->  ( ( ( X ( 2nd `  F ) y ) `  g
) `  A )
) )  ->  (
( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X ) 
|->  ( ( ( X ( 2nd `  F
) y ) `  g ) `  A
) ) ) `  P ) `  G
)  =  ( ( ( X ( 2nd `  F ) P ) `
 G ) `  A ) ) )
4723, 46mpd 14 . 2  |-  ( ph  ->  ( ( ( y  e.  B  |->  ( g  e.  ( y (  Hom  `  C ) X )  |->  ( ( ( X ( 2nd `  F ) y ) `
 g ) `  A ) ) ) `
 P ) `  G )  =  ( ( ( X ( 2nd `  F ) P ) `  G
) `  A )
)
4822, 47eqtrd 2398 1  |-  ( ph  ->  ( ( ( ( F N X ) `
 A ) `  P ) `  G
)  =  ( ( ( X ( 2nd `  F ) P ) `
 G ) `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   _Vcvv 2873    u. cun 3236    C_ wss 3238   <.cop 3732    e. cmpt 4179   ran crn 4793   ` cfv 5358  (class class class)co 5981    e. cmpt2 5983   1stc1st 6247   2ndc2nd 6248  tpos ctpos 6375   Basecbs 13356    Hom chom 13427   Catccat 13776   Idccid 13777    Homf chomf 13778  oppCatcoppc 13824    Func cfunc 13938    o.func ccofu 13940   FuncCat cfuc 14026   SetCatcsetc 14117    X.c cxpc 14152    1stF c1stf 14153    2ndF c2ndf 14154   ⟨,⟩F cprf 14155   evalF cevlf 14193  HomFchof 14232  Yoncyon 14233
This theorem is referenced by:  yonedalem4c  14261  yonedainv  14265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986
  Copyright terms: Public domain W3C validator