MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yoniso Structured version   Unicode version

Theorem yoniso 14384
Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from  C into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
yoniso.y  |-  Y  =  (Yon `  C )
yoniso.o  |-  O  =  (oppCat `  C )
yoniso.s  |-  S  =  ( SetCat `  U )
yoniso.d  |-  D  =  (CatCat `  V )
yoniso.b  |-  B  =  ( Base `  D
)
yoniso.i  |-  I  =  (  Iso  `  D
)
yoniso.q  |-  Q  =  ( O FuncCat  S )
yoniso.e  |-  E  =  ( Qs  ran  ( 1st `  Y
) )
yoniso.v  |-  ( ph  ->  V  e.  X )
yoniso.c  |-  ( ph  ->  C  e.  B )
yoniso.u  |-  ( ph  ->  U  e.  W )
yoniso.h  |-  ( ph  ->  ran  (  Homf  `  C ) 
C_  U )
yoniso.eb  |-  ( ph  ->  E  e.  B )
yoniso.1  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( x
(  Hom  `  C ) y ) )  =  y )
Assertion
Ref Expression
yoniso  |-  ( ph  ->  Y  e.  ( C I E ) )
Distinct variable groups:    x, y, C    y, F    ph, x, y   
x, Y, y
Allowed substitution hints:    B( x, y)    D( x, y)    Q( x, y)    S( x, y)    U( x, y)    E( x, y)    F( x)    I( x, y)    O( x, y)    V( x, y)    W( x, y)    X( x, y)

Proof of Theorem yoniso
StepHypRef Expression
1 relfunc 14061 . . . 4  |-  Rel  ( C  Func  Q )
2 yoniso.y . . . . 5  |-  Y  =  (Yon `  C )
3 yoniso.d . . . . . . . 8  |-  D  =  (CatCat `  V )
4 yoniso.b . . . . . . . 8  |-  B  =  ( Base `  D
)
5 yoniso.v . . . . . . . 8  |-  ( ph  ->  V  e.  X )
63, 4, 5catcbas 14254 . . . . . . 7  |-  ( ph  ->  B  =  ( V  i^i  Cat ) )
7 inss2 3564 . . . . . . 7  |-  ( V  i^i  Cat )  C_  Cat
86, 7syl6eqss 3400 . . . . . 6  |-  ( ph  ->  B  C_  Cat )
9 yoniso.c . . . . . 6  |-  ( ph  ->  C  e.  B )
108, 9sseldd 3351 . . . . 5  |-  ( ph  ->  C  e.  Cat )
11 yoniso.o . . . . 5  |-  O  =  (oppCat `  C )
12 yoniso.s . . . . 5  |-  S  =  ( SetCat `  U )
13 yoniso.q . . . . 5  |-  Q  =  ( O FuncCat  S )
14 yoniso.u . . . . 5  |-  ( ph  ->  U  e.  W )
15 yoniso.h . . . . 5  |-  ( ph  ->  ran  (  Homf  `  C ) 
C_  U )
162, 10, 11, 12, 13, 14, 15yoncl 14361 . . . 4  |-  ( ph  ->  Y  e.  ( C 
Func  Q ) )
17 1st2nd 6395 . . . 4  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  Y  =  <. ( 1st `  Y
) ,  ( 2nd `  Y ) >. )
181, 16, 17sylancr 646 . . 3  |-  ( ph  ->  Y  =  <. ( 1st `  Y ) ,  ( 2nd `  Y
) >. )
192, 11, 12, 13, 10, 14, 15yonffth 14383 . . . . 5  |-  ( ph  ->  Y  e.  ( ( C Full  Q )  i^i  ( C Faith  Q ) ) )
2018, 19eqeltrrd 2513 . . . 4  |-  ( ph  -> 
<. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  Q )  i^i  ( C Faith  Q
) ) )
21 eqid 2438 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
22 yoniso.e . . . . . 6  |-  E  =  ( Qs  ran  ( 1st `  Y
) )
2311oppccat 13950 . . . . . . . 8  |-  ( C  e.  Cat  ->  O  e.  Cat )
2410, 23syl 16 . . . . . . 7  |-  ( ph  ->  O  e.  Cat )
2512setccat 14242 . . . . . . . 8  |-  ( U  e.  W  ->  S  e.  Cat )
2614, 25syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  Cat )
2713, 24, 26fuccat 14169 . . . . . 6  |-  ( ph  ->  Q  e.  Cat )
28 fvex 5744 . . . . . . . 8  |-  ( 1st `  Y )  e.  _V
2928rnex 5135 . . . . . . 7  |-  ran  ( 1st `  Y )  e. 
_V
3029a1i 11 . . . . . 6  |-  ( ph  ->  ran  ( 1st `  Y
)  e.  _V )
3113fucbas 14159 . . . . . . . . 9  |-  ( O 
Func  S )  =  (
Base `  Q )
32 1st2ndbr 6398 . . . . . . . . . 10  |-  ( ( Rel  ( C  Func  Q )  /\  Y  e.  ( C  Func  Q
) )  ->  ( 1st `  Y ) ( C  Func  Q )
( 2nd `  Y
) )
331, 16, 32sylancr 646 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  Y
) ( C  Func  Q ) ( 2nd `  Y
) )
3421, 31, 33funcf1 14065 . . . . . . . 8  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) --> ( O 
Func  S ) )
35 ffn 5593 . . . . . . . 8  |-  ( ( 1st `  Y ) : ( Base `  C
) --> ( O  Func  S )  ->  ( 1st `  Y )  Fn  ( Base `  C ) )
3634, 35syl 16 . . . . . . 7  |-  ( ph  ->  ( 1st `  Y
)  Fn  ( Base `  C ) )
37 dffn3 5600 . . . . . . 7  |-  ( ( 1st `  Y )  Fn  ( Base `  C
)  <->  ( 1st `  Y
) : ( Base `  C ) --> ran  ( 1st `  Y ) )
3836, 37sylib 190 . . . . . 6  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) --> ran  ( 1st `  Y ) )
3921, 22, 27, 30, 38ffthres2c 14139 . . . . 5  |-  ( ph  ->  ( ( 1st `  Y
) ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <-> 
( 1st `  Y
) ( ( C Full 
E )  i^i  ( C Faith  E ) ) ( 2nd `  Y ) ) )
40 df-br 4215 . . . . 5  |-  ( ( 1st `  Y ) ( ( C Full  Q
)  i^i  ( C Faith  Q ) ) ( 2nd `  Y )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
Q )  i^i  ( C Faith  Q ) ) )
41 df-br 4215 . . . . 5  |-  ( ( 1st `  Y ) ( ( C Full  E
)  i^i  ( C Faith  E ) ) ( 2nd `  Y )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
E )  i^i  ( C Faith  E ) ) )
4239, 40, 413bitr3g 280 . . . 4  |-  ( ph  ->  ( <. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  Q )  i^i  ( C Faith  Q
) )  <->  <. ( 1st `  Y ) ,  ( 2nd `  Y )
>.  e.  ( ( C Full 
E )  i^i  ( C Faith  E ) ) ) )
4320, 42mpbid 203 . . 3  |-  ( ph  -> 
<. ( 1st `  Y
) ,  ( 2nd `  Y ) >.  e.  ( ( C Full  E )  i^i  ( C Faith  E
) ) )
4418, 43eqeltrd 2512 . 2  |-  ( ph  ->  Y  e.  ( ( C Full  E )  i^i  ( C Faith  E ) ) )
45 fveq2 5730 . . . . . . . . 9  |-  ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  ( 1st `  ( ( 1st `  Y
) `  x )
)  =  ( 1st `  ( ( 1st `  Y
) `  y )
) )
4645fveq1d 5732 . . . . . . . 8  |-  ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  ( ( 1st `  ( ( 1st `  Y ) `  x
) ) `  x
)  =  ( ( 1st `  ( ( 1st `  Y ) `
 y ) ) `
 x ) )
4746fveq2d 5734 . . . . . . 7  |-  ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  ( F `
 ( ( 1st `  ( ( 1st `  Y
) `  y )
) `  x )
) )
48 simpl 445 . . . . . . . . . 10  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) )  ->  x  e.  ( Base `  C
) )
4948, 48jca 520 . . . . . . . . 9  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) )  ->  (
x  e.  ( Base `  C )  /\  x  e.  ( Base `  C
) ) )
50 eleq1 2498 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
y  e.  ( Base `  C )  <->  x  e.  ( Base `  C )
) )
5150anbi2d 686 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
( x  e.  (
Base `  C )  /\  y  e.  ( Base `  C ) )  <-> 
( x  e.  (
Base `  C )  /\  x  e.  ( Base `  C ) ) ) )
5251anbi2d 686 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  <->  ( ph  /\  ( x  e.  (
Base `  C )  /\  x  e.  ( Base `  C ) ) ) ) )
53 fveq2 5730 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
( 1st `  Y
) `  y )  =  ( ( 1st `  Y ) `  x
) )
5453fveq2d 5734 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( 1st `  ( ( 1st `  Y ) `  y
) )  =  ( 1st `  ( ( 1st `  Y ) `
 x ) ) )
5554fveq1d 5732 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
( 1st `  (
( 1st `  Y
) `  y )
) `  x )  =  ( ( 1st `  ( ( 1st `  Y
) `  x )
) `  x )
)
5655fveq2d 5734 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  y
) ) `  x
) )  =  ( F `  ( ( 1st `  ( ( 1st `  Y ) `
 x ) ) `
 x ) ) )
57 id 21 . . . . . . . . . . . 12  |-  ( y  =  x  ->  y  =  x )
5856, 57eqeq12d 2452 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( F `  (
( 1st `  (
( 1st `  Y
) `  y )
) `  x )
)  =  y  <->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  x ) )
5952, 58imbi12d 313 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) ) )  ->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  y )
) `  x )
)  =  y )  <-> 
( ( ph  /\  ( x  e.  ( Base `  C )  /\  x  e.  ( Base `  C ) ) )  ->  ( F `  ( ( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  x ) ) )
6010adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  C  e.  Cat )
61 simprr 735 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  y  e.  ( Base `  C
) )
62 eqid 2438 . . . . . . . . . . . . 13  |-  (  Hom  `  C )  =  (  Hom  `  C )
63 simprl 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  x  e.  ( Base `  C
) )
642, 21, 60, 61, 62, 63yon11 14363 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  (
( 1st `  Y
) `  y )
) `  x )  =  ( x (  Hom  `  C )
y ) )
6564fveq2d 5734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  y
) ) `  x
) )  =  ( F `  ( x (  Hom  `  C
) y ) ) )
66 yoniso.1 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( x
(  Hom  `  C ) y ) )  =  y )
6765, 66eqtrd 2470 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  y
) ) `  x
) )  =  y )
6859, 67chvarv 1970 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  x  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  x
) ) `  x
) )  =  x )
6949, 68sylan2 462 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( F `  ( ( 1st `  ( ( 1st `  Y ) `  x
) ) `  x
) )  =  x )
7069, 67eqeq12d 2452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( F `  (
( 1st `  (
( 1st `  Y
) `  x )
) `  x )
)  =  ( F `
 ( ( 1st `  ( ( 1st `  Y
) `  y )
) `  x )
)  <->  x  =  y
) )
7147, 70syl5ib 212 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  x  =  y ) )
7271ralrimivva 2800 . . . . 5  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) ( ( ( 1st `  Y
) `  x )  =  ( ( 1st `  Y ) `  y
)  ->  x  =  y ) )
73 dff13 6006 . . . . 5  |-  ( ( 1st `  Y ) : ( Base `  C
) -1-1-> ( O  Func  S )  <->  ( ( 1st `  Y ) : (
Base `  C ) --> ( O  Func  S )  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) ( ( ( 1st `  Y ) `
 x )  =  ( ( 1st `  Y
) `  y )  ->  x  =  y ) ) )
7434, 72, 73sylanbrc 647 . . . 4  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) -1-1-> ( O 
Func  S ) )
75 f1f1orn 5687 . . . 4  |-  ( ( 1st `  Y ) : ( Base `  C
) -1-1-> ( O  Func  S )  ->  ( 1st `  Y ) : (
Base `  C ) -1-1-onto-> ran  ( 1st `  Y ) )
7674, 75syl 16 . . 3  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ran  ( 1st `  Y
) )
77 frn 5599 . . . . . 6  |-  ( ( 1st `  Y ) : ( Base `  C
) --> ( O  Func  S )  ->  ran  ( 1st `  Y )  C_  ( O  Func  S ) )
7834, 77syl 16 . . . . 5  |-  ( ph  ->  ran  ( 1st `  Y
)  C_  ( O  Func  S ) )
7922, 31ressbas2 13522 . . . . 5  |-  ( ran  ( 1st `  Y
)  C_  ( O  Func  S )  ->  ran  ( 1st `  Y )  =  ( Base `  E
) )
8078, 79syl 16 . . . 4  |-  ( ph  ->  ran  ( 1st `  Y
)  =  ( Base `  E ) )
81 f1oeq3 5669 . . . 4  |-  ( ran  ( 1st `  Y
)  =  ( Base `  E )  ->  (
( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ran  ( 1st `  Y
)  <->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ( Base `  E
) ) )
8280, 81syl 16 . . 3  |-  ( ph  ->  ( ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ran  ( 1st `  Y
)  <->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ( Base `  E
) ) )
8376, 82mpbid 203 . 2  |-  ( ph  ->  ( 1st `  Y
) : ( Base `  C ) -1-1-onto-> ( Base `  E
) )
84 eqid 2438 . . 3  |-  ( Base `  E )  =  (
Base `  E )
85 yoniso.eb . . 3  |-  ( ph  ->  E  e.  B )
86 yoniso.i . . 3  |-  I  =  (  Iso  `  D
)
873, 4, 21, 84, 5, 9, 85, 86catciso 14264 . 2  |-  ( ph  ->  ( Y  e.  ( C I E )  <-> 
( Y  e.  ( ( C Full  E )  i^i  ( C Faith  E
) )  /\  ( 1st `  Y ) : ( Base `  C
)
-1-1-onto-> ( Base `  E )
) ) )
8844, 83, 87mpbir2and 890 1  |-  ( ph  ->  Y  e.  ( C I E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    i^i cin 3321    C_ wss 3322   <.cop 3819   class class class wbr 4214   ran crn 4881   Rel wrel 4885    Fn wfn 5451   -->wf 5452   -1-1->wf1 5453   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083   1stc1st 6349   2ndc2nd 6350   Basecbs 13471   ↾s cress 13472    Hom chom 13542   Catccat 13891    Homf chomf 13893  oppCatcoppc 13939    Iso ciso 13974    Func cfunc 14053   Full cful 14101   Faith cfth 14102   FuncCat cfuc 14141   SetCatcsetc 14232  CatCatccatc 14251  Yoncyon 14348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-tpos 6481  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-hom 13555  df-cco 13556  df-cat 13895  df-cid 13896  df-homf 13897  df-comf 13898  df-oppc 13940  df-sect 13975  df-inv 13976  df-iso 13977  df-ssc 14012  df-resc 14013  df-subc 14014  df-func 14057  df-idfu 14058  df-cofu 14059  df-full 14103  df-fth 14104  df-nat 14142  df-fuc 14143  df-setc 14233  df-catc 14252  df-xpc 14271  df-1stf 14272  df-2ndf 14273  df-prf 14274  df-evlf 14312  df-curf 14313  df-hof 14349  df-yon 14350
  Copyright terms: Public domain W3C validator