MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo2 Unicode version

Theorem zeo2 10100
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zeo2  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )

Proof of Theorem zeo2
StepHypRef Expression
1 zcn 10031 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 peano2cn 8986 . . . . . 6  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
31, 2syl 15 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  CC )
4 2cn 9818 . . . . . 6  |-  2  e.  CC
54a1i 10 . . . . 5  |-  ( N  e.  ZZ  ->  2  e.  CC )
6 2ne0 9831 . . . . . 6  |-  2  =/=  0
76a1i 10 . . . . 5  |-  ( N  e.  ZZ  ->  2  =/=  0 )
83, 5, 7divcan2d 9540 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( N  +  1 )  /  2 ) )  =  ( N  + 
1 ) )
91, 5, 7divcan2d 9540 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  ( N  /  2 ) )  =  N )
109oveq1d 5875 . . . 4  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( N  /  2 ) )  +  1 )  =  ( N  +  1 ) )
118, 10eqtr4d 2320 . . 3  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( N  +  1 )  /  2 ) )  =  ( ( 2  x.  ( N  / 
2 ) )  +  1 ) )
12 zneo 10096 . . . . 5  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( 2  x.  ( ( N  + 
1 )  /  2
) )  =/=  (
( 2  x.  ( N  /  2 ) )  +  1 ) )
1312expcom 424 . . . 4  |-  ( ( N  /  2 )  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( 2  x.  ( ( N  +  1 )  /  2 ) )  =/=  ( ( 2  x.  ( N  / 
2 ) )  +  1 ) ) )
1413necon2bd 2497 . . 3  |-  ( ( N  /  2 )  e.  ZZ  ->  (
( 2  x.  (
( N  +  1 )  /  2 ) )  =  ( ( 2  x.  ( N  /  2 ) )  +  1 )  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
1511, 14syl5com 26 . 2  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
16 zeo 10099 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
1716ord 366 . . 3  |-  ( N  e.  ZZ  ->  ( -.  ( N  /  2
)  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
1817con1d 116 . 2  |-  ( N  e.  ZZ  ->  ( -.  ( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( N  /  2 )  e.  ZZ ) )
1915, 18impbid 183 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    = wceq 1625    e. wcel 1686    =/= wne 2448  (class class class)co 5860   CCcc 8737   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    / cdiv 9425   2c2 9797   ZZcz 10026
This theorem is referenced by:  zesq  11226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-n0 9968  df-z 10027
  Copyright terms: Public domain W3C validator