MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnen Unicode version

Theorem znnen 12775
Description: The set of integers and the set of natural numbers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
znnen  |-  ZZ  ~~  NN

Proof of Theorem znnen
StepHypRef Expression
1 omelon 7565 . . . . . 6  |-  om  e.  On
2 nnenom 11282 . . . . . . 7  |-  NN  ~~  om
32ensymi 7124 . . . . . 6  |-  om  ~~  NN
4 isnumi 7797 . . . . . 6  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
51, 3, 4mp2an 654 . . . . 5  |-  NN  e.  dom  card
6 xpnum 7802 . . . . 5  |-  ( ( NN  e.  dom  card  /\  NN  e.  dom  card )  ->  ( NN  X.  NN )  e.  dom  card )
75, 5, 6mp2an 654 . . . 4  |-  ( NN 
X.  NN )  e. 
dom  card
8 subf 9271 . . . . . . 7  |-  -  :
( CC  X.  CC )
--> CC
9 ffun 5560 . . . . . . 7  |-  (  -  : ( CC  X.  CC ) --> CC  ->  Fun  -  )
108, 9ax-mp 8 . . . . . 6  |-  Fun  -
11 nnsscn 9969 . . . . . . . 8  |-  NN  C_  CC
12 xpss12 4948 . . . . . . . 8  |-  ( ( NN  C_  CC  /\  NN  C_  CC )  ->  ( NN  X.  NN )  C_  ( CC  X.  CC ) )
1311, 11, 12mp2an 654 . . . . . . 7  |-  ( NN 
X.  NN )  C_  ( CC  X.  CC )
148fdmi 5563 . . . . . . 7  |-  dom  -  =  ( CC  X.  CC )
1513, 14sseqtr4i 3349 . . . . . 6  |-  ( NN 
X.  NN )  C_  dom  -
16 fores 5629 . . . . . 6  |-  ( ( Fun  -  /\  ( NN  X.  NN )  C_  dom  -  )  ->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> (  -  " ( NN  X.  NN ) ) )
1710, 15, 16mp2an 654 . . . . 5  |-  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> (  -  " ( NN  X.  NN ) )
18 dfz2 10263 . . . . . 6  |-  ZZ  =  (  -  " ( NN  X.  NN ) )
19 foeq3 5618 . . . . . 6  |-  ( ZZ  =  (  -  "
( NN  X.  NN ) )  ->  (
(  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  <->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> (  -  "
( NN  X.  NN ) ) ) )
2018, 19ax-mp 8 . . . . 5  |-  ( (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  <->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> (  -  "
( NN  X.  NN ) ) )
2117, 20mpbir 201 . . . 4  |-  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> ZZ
22 fodomnum 7902 . . . 4  |-  ( ( NN  X.  NN )  e.  dom  card  ->  ( (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  ->  ZZ  ~<_  ( NN 
X.  NN ) ) )
237, 21, 22mp2 9 . . 3  |-  ZZ  ~<_  ( NN 
X.  NN )
24 xpnnen 12771 . . 3  |-  ( NN 
X.  NN )  ~~  NN
25 domentr 7133 . . 3  |-  ( ( ZZ  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  ZZ  ~<_  NN )
2623, 24, 25mp2an 654 . 2  |-  ZZ  ~<_  NN
27 zex 10255 . . 3  |-  ZZ  e.  _V
28 nnssz 10265 . . 3  |-  NN  C_  ZZ
29 ssdomg 7120 . . 3  |-  ( ZZ  e.  _V  ->  ( NN  C_  ZZ  ->  NN  ~<_  ZZ ) )
3027, 28, 29mp2 9 . 2  |-  NN  ~<_  ZZ
31 sbth 7194 . 2  |-  ( ( ZZ  ~<_  NN  /\  NN  ~<_  ZZ )  ->  ZZ  ~~  NN )
3226, 30, 31mp2an 654 1  |-  ZZ  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1721   _Vcvv 2924    C_ wss 3288   class class class wbr 4180   Oncon0 4549   omcom 4812    X. cxp 4843   dom cdm 4845    |` cres 4847   "cima 4848   Fun wfun 5415   -->wf 5417   -onto->wfo 5419    ~~ cen 7073    ~<_ cdom 7074   cardccrd 7786   CCcc 8952    - cmin 9255   NNcn 9964   ZZcz 10246
This theorem is referenced by:  qnnen  12776  odinf  15162  odhash  15171  cygctb  15464  iscmet3  19207  dyadmbl  19453  mbfsup  19517  dya2iocct  24591
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-omul 6696  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-oi 7443  df-card 7790  df-acn 7793  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-n0 10186  df-z 10247  df-uz 10453
  Copyright terms: Public domain W3C validator