MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunithash Structured version   Unicode version

Theorem znunithash 16845
Description: The size of the unit group of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
Assertion
Ref Expression
znunithash  |-  ( N  e.  NN  ->  ( # `
 U )  =  ( phi `  N
) )

Proof of Theorem znunithash
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfphi2 13163 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
2 nnnn0 10228 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 eqid 2436 . . . . . . . . . 10  |-  (flds  ZZ )  =  (flds  ZZ )
4 znchr.y . . . . . . . . . 10  |-  Y  =  (ℤ/n `  N )
5 eqid 2436 . . . . . . . . . 10  |-  ( Base `  Y )  =  (
Base `  Y )
6 eqid 2436 . . . . . . . . . 10  |-  ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  =  ( ( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
7 eqid 2436 . . . . . . . . . 10  |-  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
83, 4, 5, 6, 7znf1o 16832 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y ) )
92, 8syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) -1-1-onto-> ( Base `  Y
) )
10 nnne0 10032 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
11 ifnefalse 3747 . . . . . . . . 9  |-  ( N  =/=  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
12 reseq2 5141 . . . . . . . . . . 11  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  =  ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) )
13 f1oeq1 5665 . . . . . . . . . . 11  |-  ( ( ( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  =  ( ( ZRHom `  Y )  |`  (
0..^ N ) )  ->  ( ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y )  <->  ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y
) ) )
1412, 13syl 16 . . . . . . . . . 10  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) -1-1-onto-> ( Base `  Y
)  <->  ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y
) ) )
15 f1oeq2 5666 . . . . . . . . . 10  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  ( 0..^ N ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y )  <->  ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y
) ) )
1614, 15bitrd 245 . . . . . . . . 9  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) -1-1-onto-> ( Base `  Y
)  <->  ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y
) ) )
1710, 11, 163syl 19 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y
)  <->  ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y
) ) )
189, 17mpbid 202 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ZRHom `  Y
)  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y ) )
19 f1ofn 5675 . . . . . . 7  |-  ( ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y )  ->  (
( ZRHom `  Y
)  |`  ( 0..^ N ) )  Fn  (
0..^ N ) )
20 elpreima 5850 . . . . . . 7  |-  ( ( ( ZRHom `  Y
)  |`  ( 0..^ N ) )  Fn  (
0..^ N )  -> 
( x  e.  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  <->  ( x  e.  ( 0..^ N )  /\  ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U ) ) )
2118, 19, 203syl 19 . . . . . 6  |-  ( N  e.  NN  ->  (
x  e.  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  <->  ( x  e.  ( 0..^ N )  /\  ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U ) ) )
22 fvres 5745 . . . . . . . . . 10  |-  ( x  e.  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  ( 0..^ N ) ) `  x
)  =  ( ( ZRHom `  Y ) `  x ) )
2322adantl 453 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ZRHom `  Y )  |`  (
0..^ N ) ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
2423eleq1d 2502 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U  <->  ( ( ZRHom `  Y ) `  x )  e.  U
) )
25 elfzoelz 11140 . . . . . . . . 9  |-  ( x  e.  ( 0..^ N )  ->  x  e.  ZZ )
26 znunit.u . . . . . . . . . 10  |-  U  =  (Unit `  Y )
27 eqid 2436 . . . . . . . . . 10  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
284, 26, 27znunit 16844 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  x
)  e.  U  <->  ( x  gcd  N )  =  1 ) )
292, 25, 28syl2an 464 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ZRHom `  Y ) `  x
)  e.  U  <->  ( x  gcd  N )  =  1 ) )
3024, 29bitrd 245 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U  <->  ( x  gcd  N )  =  1 ) )
3130pm5.32da 623 . . . . . 6  |-  ( N  e.  NN  ->  (
( x  e.  ( 0..^ N )  /\  ( ( ( ZRHom `  Y )  |`  (
0..^ N ) ) `
 x )  e.  U )  <->  ( x  e.  ( 0..^ N )  /\  ( x  gcd  N )  =  1 ) ) )
3221, 31bitrd 245 . . . . 5  |-  ( N  e.  NN  ->  (
x  e.  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  <->  ( x  e.  ( 0..^ N )  /\  ( x  gcd  N )  =  1 ) ) )
3332abbi2dv 2551 . . . 4  |-  ( N  e.  NN  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  =  { x  |  ( x  e.  ( 0..^ N )  /\  (
x  gcd  N )  =  1 ) } )
34 df-rab 2714 . . . 4  |-  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  =  { x  |  ( x  e.  ( 0..^ N )  /\  ( x  gcd  N )  =  1 ) }
3533, 34syl6eqr 2486 . . 3  |-  ( N  e.  NN  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } )
3635fveq2d 5732 . 2  |-  ( N  e.  NN  ->  ( # `
 ( `' ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) " U
) )  =  (
# `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
37 f1ocnv 5687 . . . . 5  |-  ( ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y )  ->  `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
)
-1-1-onto-> ( 0..^ N ) )
38 f1of1 5673 . . . . 5  |-  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
)
-1-1-onto-> ( 0..^ N )  ->  `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
) -1-1-> ( 0..^ N ) )
3918, 37, 383syl 19 . . . 4  |-  ( N  e.  NN  ->  `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
) -1-1-> ( 0..^ N ) )
40 ovex 6106 . . . . 5  |-  ( 0..^ N )  e.  _V
4140a1i 11 . . . 4  |-  ( N  e.  NN  ->  (
0..^ N )  e. 
_V )
425, 26unitss 15765 . . . . 5  |-  U  C_  ( Base `  Y )
4342a1i 11 . . . 4  |-  ( N  e.  NN  ->  U  C_  ( Base `  Y
) )
44 fvex 5742 . . . . . 6  |-  (Unit `  Y )  e.  _V
4526, 44eqeltri 2506 . . . . 5  |-  U  e. 
_V
4645a1i 11 . . . 4  |-  ( N  e.  NN  ->  U  e.  _V )
47 f1imaen2g 7168 . . . 4  |-  ( ( ( `' ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) : ( Base `  Y ) -1-1-> ( 0..^ N )  /\  (
0..^ N )  e. 
_V )  /\  ( U  C_  ( Base `  Y
)  /\  U  e.  _V ) )  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  ~~  U )
4839, 41, 43, 46, 47syl22anc 1185 . . 3  |-  ( N  e.  NN  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  ~~  U )
49 hasheni 11632 . . 3  |-  ( ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  ~~  U  ->  ( # `  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U ) )  =  ( # `  U
) )
5048, 49syl 16 . 2  |-  ( N  e.  NN  ->  ( # `
 ( `' ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) " U
) )  =  (
# `  U )
)
511, 36, 503eqtr2rd 2475 1  |-  ( N  e.  NN  ->  ( # `
 U )  =  ( phi `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   {crab 2709   _Vcvv 2956    C_ wss 3320   ifcif 3739   class class class wbr 4212   `'ccnv 4877    |` cres 4880   "cima 4881    Fn wfn 5449   -1-1->wf1 5451   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081    ~~ cen 7106   0cc0 8990   1c1 8991   NNcn 10000   NN0cn0 10221   ZZcz 10282  ..^cfzo 11135   #chash 11618    gcd cgcd 13006   phicphi 13153   Basecbs 13469   ↾s cress 13470  Unitcui 15744  ℂfldccnfld 16703   ZRHomczrh 16778  ℤ/nczn 16781
This theorem is referenced by:  dchrfi  21039  dchrsum2  21052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-dvds 12853  df-gcd 13007  df-phi 13155  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-0g 13727  df-imas 13734  df-divs 13735  df-mnd 14690  df-mhm 14738  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-nsg 14942  df-eqg 14943  df-ghm 15004  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-rnghom 15819  df-subrg 15866  df-lmod 15952  df-lss 16009  df-lsp 16048  df-sra 16244  df-rgmod 16245  df-lidl 16246  df-rsp 16247  df-2idl 16303  df-cnfld 16704  df-zrh 16782  df-zn 16785
  Copyright terms: Public domain W3C validator