MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunithash Unicode version

Theorem znunithash 16520
Description: The size of the unit group of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
Assertion
Ref Expression
znunithash  |-  ( N  e.  NN  ->  ( # `
 U )  =  ( phi `  N
) )

Proof of Theorem znunithash
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfphi2 12844 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
2 nnnn0 9974 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 eqid 2285 . . . . . . . . . 10  |-  (flds  ZZ )  =  (flds  ZZ )
4 znchr.y . . . . . . . . . 10  |-  Y  =  (ℤ/n `  N )
5 eqid 2285 . . . . . . . . . 10  |-  ( Base `  Y )  =  (
Base `  Y )
6 eqid 2285 . . . . . . . . . 10  |-  ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  =  ( ( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
7 eqid 2285 . . . . . . . . . 10  |-  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
83, 4, 5, 6, 7znf1o 16507 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y ) )
92, 8syl 15 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) -1-1-onto-> ( Base `  Y
) )
10 nnne0 9780 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
11 ifnefalse 3575 . . . . . . . . 9  |-  ( N  =/=  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
12 reseq2 4952 . . . . . . . . . . 11  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  =  ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) )
13 f1oeq1 5465 . . . . . . . . . . 11  |-  ( ( ( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  =  ( ( ZRHom `  Y )  |`  (
0..^ N ) )  ->  ( ( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y )  <->  ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y
) ) )
1412, 13syl 15 . . . . . . . . . 10  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) -1-1-onto-> ( Base `  Y
)  <->  ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y
) ) )
15 f1oeq2 5466 . . . . . . . . . 10  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  ( 0..^ N ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y )  <->  ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y
) ) )
1614, 15bitrd 244 . . . . . . . . 9  |-  ( if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) -1-1-onto-> ( Base `  Y
)  <->  ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y
) ) )
1710, 11, 163syl 18 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ZRHom `  Y )  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Y
)  <->  ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y
) ) )
189, 17mpbid 201 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ZRHom `  Y
)  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y ) )
19 f1ofn 5475 . . . . . . 7  |-  ( ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y )  ->  (
( ZRHom `  Y
)  |`  ( 0..^ N ) )  Fn  (
0..^ N ) )
20 elpreima 5647 . . . . . . 7  |-  ( ( ( ZRHom `  Y
)  |`  ( 0..^ N ) )  Fn  (
0..^ N )  -> 
( x  e.  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  <->  ( x  e.  ( 0..^ N )  /\  ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U ) ) )
2118, 19, 203syl 18 . . . . . 6  |-  ( N  e.  NN  ->  (
x  e.  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  <->  ( x  e.  ( 0..^ N )  /\  ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U ) ) )
22 fvres 5544 . . . . . . . . . 10  |-  ( x  e.  ( 0..^ N )  ->  ( (
( ZRHom `  Y
)  |`  ( 0..^ N ) ) `  x
)  =  ( ( ZRHom `  Y ) `  x ) )
2322adantl 452 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ZRHom `  Y )  |`  (
0..^ N ) ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
2423eleq1d 2351 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U  <->  ( ( ZRHom `  Y ) `  x )  e.  U
) )
25 elfzoelz 10877 . . . . . . . . 9  |-  ( x  e.  ( 0..^ N )  ->  x  e.  ZZ )
26 znunit.u . . . . . . . . . 10  |-  U  =  (Unit `  Y )
27 eqid 2285 . . . . . . . . . 10  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
284, 26, 27znunit 16519 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  x
)  e.  U  <->  ( x  gcd  N )  =  1 ) )
292, 25, 28syl2an 463 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ZRHom `  Y ) `  x
)  e.  U  <->  ( x  gcd  N )  =  1 ) )
3024, 29bitrd 244 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( 0..^ N ) )  -> 
( ( ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) `  x )  e.  U  <->  ( x  gcd  N )  =  1 ) )
3130pm5.32da 622 . . . . . 6  |-  ( N  e.  NN  ->  (
( x  e.  ( 0..^ N )  /\  ( ( ( ZRHom `  Y )  |`  (
0..^ N ) ) `
 x )  e.  U )  <->  ( x  e.  ( 0..^ N )  /\  ( x  gcd  N )  =  1 ) ) )
3221, 31bitrd 244 . . . . 5  |-  ( N  e.  NN  ->  (
x  e.  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  <->  ( x  e.  ( 0..^ N )  /\  ( x  gcd  N )  =  1 ) ) )
3332abbi2dv 2400 . . . 4  |-  ( N  e.  NN  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  =  { x  |  ( x  e.  ( 0..^ N )  /\  (
x  gcd  N )  =  1 ) } )
34 df-rab 2554 . . . 4  |-  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  =  { x  |  ( x  e.  ( 0..^ N )  /\  ( x  gcd  N )  =  1 ) }
3533, 34syl6eqr 2335 . . 3  |-  ( N  e.  NN  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } )
3635fveq2d 5531 . 2  |-  ( N  e.  NN  ->  ( # `
 ( `' ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) " U
) )  =  (
# `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
37 f1ocnv 5487 . . . . 5  |-  ( ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) : ( 0..^ N ) -1-1-onto-> ( Base `  Y )  ->  `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
)
-1-1-onto-> ( 0..^ N ) )
38 f1of1 5473 . . . . 5  |-  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
)
-1-1-onto-> ( 0..^ N )  ->  `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
) -1-1-> ( 0..^ N ) )
3918, 37, 383syl 18 . . . 4  |-  ( N  e.  NN  ->  `' ( ( ZRHom `  Y )  |`  (
0..^ N ) ) : ( Base `  Y
) -1-1-> ( 0..^ N ) )
40 ovex 5885 . . . . 5  |-  ( 0..^ N )  e.  _V
4140a1i 10 . . . 4  |-  ( N  e.  NN  ->  (
0..^ N )  e. 
_V )
425, 26unitss 15444 . . . . 5  |-  U  C_  ( Base `  Y )
4342a1i 10 . . . 4  |-  ( N  e.  NN  ->  U  C_  ( Base `  Y
) )
44 fvex 5541 . . . . . 6  |-  (Unit `  Y )  e.  _V
4526, 44eqeltri 2355 . . . . 5  |-  U  e. 
_V
4645a1i 10 . . . 4  |-  ( N  e.  NN  ->  U  e.  _V )
47 f1imaen2g 6924 . . . 4  |-  ( ( ( `' ( ( ZRHom `  Y )  |`  ( 0..^ N ) ) : ( Base `  Y ) -1-1-> ( 0..^ N )  /\  (
0..^ N )  e. 
_V )  /\  ( U  C_  ( Base `  Y
)  /\  U  e.  _V ) )  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  ~~  U )
4839, 41, 43, 46, 47syl22anc 1183 . . 3  |-  ( N  e.  NN  ->  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  ~~  U )
49 hasheni 11349 . . 3  |-  ( ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U )  ~~  U  ->  ( # `  ( `' ( ( ZRHom `  Y )  |`  (
0..^ N ) )
" U ) )  =  ( # `  U
) )
5048, 49syl 15 . 2  |-  ( N  e.  NN  ->  ( # `
 ( `' ( ( ZRHom `  Y
)  |`  ( 0..^ N ) ) " U
) )  =  (
# `  U )
)
511, 36, 503eqtr2rd 2324 1  |-  ( N  e.  NN  ->  ( # `
 U )  =  ( phi `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   {cab 2271    =/= wne 2448   {crab 2549   _Vcvv 2790    C_ wss 3154   ifcif 3567   class class class wbr 4025   `'ccnv 4690    |` cres 4693   "cima 4694    Fn wfn 5252   -1-1->wf1 5254   -1-1-onto->wf1o 5256   ` cfv 5257  (class class class)co 5860    ~~ cen 6862   0cc0 8739   1c1 8740   NNcn 9748   NN0cn0 9967   ZZcz 10026  ..^cfzo 10872   #chash 11339    gcd cgcd 12687   phicphi 12834   Basecbs 13150   ↾s cress 13151  Unitcui 15423  ℂfldccnfld 16379   ZRHomczrh 16453  ℤ/nczn 16456
This theorem is referenced by:  dchrfi  20496  dchrsum2  20509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-tpos 6236  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-ec 6664  df-qs 6668  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-rp 10357  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-dvds 12534  df-gcd 12688  df-phi 12836  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-0g 13406  df-imas 13413  df-divs 13414  df-mnd 14369  df-mhm 14417  df-grp 14491  df-minusg 14492  df-sbg 14493  df-mulg 14494  df-subg 14620  df-nsg 14621  df-eqg 14622  df-ghm 14683  df-cmn 15093  df-abl 15094  df-mgp 15328  df-rng 15342  df-cring 15343  df-ur 15344  df-oppr 15407  df-dvdsr 15425  df-unit 15426  df-rnghom 15498  df-subrg 15545  df-lmod 15631  df-lss 15692  df-lsp 15731  df-sra 15927  df-rgmod 15928  df-lidl 15929  df-rsp 15930  df-2idl 15986  df-cnfld 16380  df-zrh 16457  df-zn 16460
  Copyright terms: Public domain W3C validator