MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem4 Unicode version

Theorem zorn2lem4 8171
Description: Lemma for zorn2 8178. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u w v ) ) )
zorn2lem.4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
zorn2lem.5  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
Assertion
Ref Expression
zorn2lem4  |-  ( ( R  Po  A  /\  w  We  A )  ->  E. x  e.  On  D  =  (/) )
Distinct variable groups:    f, g, u, v, w, x, z, A    D, f, u, v   
f, F, g, u, v, x, z    R, f, g, u, v, w, x, z    v, C
Allowed substitution hints:    C( x, z, w, u, f, g)    D( x, z, w, g)    F( w)

Proof of Theorem zorn2lem4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pm3.24 852 . 2  |-  -.  ( ran  F  e.  _V  /\  -.  ran  F  e.  _V )
2 df-ne 2481 . . . . 5  |-  ( D  =/=  (/)  <->  -.  D  =  (/) )
32ralbii 2601 . . . 4  |-  ( A. x  e.  On  D  =/=  (/)  <->  A. x  e.  On  -.  D  =  (/) )
4 df-ral 2582 . . . 4  |-  ( A. x  e.  On  D  =/=  (/)  <->  A. x ( x  e.  On  ->  D  =/=  (/) ) )
5 ralnex 2587 . . . 4  |-  ( A. x  e.  On  -.  D  =  (/)  <->  -.  E. x  e.  On  D  =  (/) )
63, 4, 53bitr3i 266 . . 3  |-  ( A. x ( x  e.  On  ->  D  =/=  (/) )  <->  -.  E. x  e.  On  D  =  (/) )
7 zorn2lem.3 . . . . . . . . . . 11  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u w v ) ) )
87tfr1 6455 . . . . . . . . . 10  |-  F  Fn  On
9 fvelrnb 5608 . . . . . . . . . 10  |-  ( F  Fn  On  ->  (
y  e.  ran  F  <->  E. x  e.  On  ( F `  x )  =  y ) )
108, 9ax-mp 8 . . . . . . . . 9  |-  ( y  e.  ran  F  <->  E. x  e.  On  ( F `  x )  =  y )
11 nfv 1610 . . . . . . . . . . 11  |-  F/ x  w  We  A
12 nfa1 1779 . . . . . . . . . . 11  |-  F/ x A. x ( x  e.  On  ->  D  =/=  (/) )
1311, 12nfan 1800 . . . . . . . . . 10  |-  F/ x
( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )
14 nfv 1610 . . . . . . . . . 10  |-  F/ x  y  e.  A
15 zorn2lem.5 . . . . . . . . . . . . . . . . . 18  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
16 ssrab2 3292 . . . . . . . . . . . . . . . . . 18  |-  { z  e.  A  |  A. g  e.  ( F " x ) g R z }  C_  A
1715, 16eqsstri 3242 . . . . . . . . . . . . . . . . 17  |-  D  C_  A
18 zorn2lem.4 . . . . . . . . . . . . . . . . . 18  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
197, 18, 15zorn2lem1 8168 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( F `  x )  e.  D
)
2017, 19sseldi 3212 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( F `  x )  e.  A
)
21 eleq1 2376 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  A  <->  y  e.  A ) )
2220, 21syl5ibcom 211 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( ( F `
 x )  =  y  ->  y  e.  A ) )
2322exp32 588 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  (
w  We  A  -> 
( D  =/=  (/)  ->  (
( F `  x
)  =  y  -> 
y  e.  A ) ) ) )
2423com12 27 . . . . . . . . . . . . 13  |-  ( w  We  A  ->  (
x  e.  On  ->  ( D  =/=  (/)  ->  (
( F `  x
)  =  y  -> 
y  e.  A ) ) ) )
2524a2d 23 . . . . . . . . . . . 12  |-  ( w  We  A  ->  (
( x  e.  On  ->  D  =/=  (/) )  -> 
( x  e.  On  ->  ( ( F `  x )  =  y  ->  y  e.  A
) ) ) )
2625spsd 1737 . . . . . . . . . . 11  |-  ( w  We  A  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ( x  e.  On  ->  ( ( F `  x )  =  y  ->  y  e.  A ) ) ) )
2726imp 418 . . . . . . . . . 10  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  (
x  e.  On  ->  ( ( F `  x
)  =  y  -> 
y  e.  A ) ) )
2813, 14, 27rexlimd 2698 . . . . . . . . 9  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  ( E. x  e.  On  ( F `  x )  =  y  ->  y  e.  A ) )
2910, 28syl5bi 208 . . . . . . . 8  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  (
y  e.  ran  F  ->  y  e.  A ) )
3029ssrdv 3219 . . . . . . 7  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  ran  F 
C_  A )
31 weso 4421 . . . . . . . . 9  |-  ( w  We  A  ->  w  Or  A )
3231adantr 451 . . . . . . . 8  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  w  Or  A )
33 vex 2825 . . . . . . . 8  |-  w  e. 
_V
34 soex 5159 . . . . . . . 8  |-  ( ( w  Or  A  /\  w  e.  _V )  ->  A  e.  _V )
3532, 33, 34sylancl 643 . . . . . . 7  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  A  e.  _V )
36 ssexg 4197 . . . . . . 7  |-  ( ( ran  F  C_  A  /\  A  e.  _V )  ->  ran  F  e.  _V )
3730, 35, 36syl2anc 642 . . . . . 6  |-  ( ( w  We  A  /\  A. x ( x  e.  On  ->  D  =/=  (/) ) )  ->  ran  F  e.  _V )
3837ex 423 . . . . 5  |-  ( w  We  A  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ran  F  e. 
_V ) )
3938adantl 452 . . . 4  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ran  F  e.  _V ) )
407, 18, 15zorn2lem3 8170 . . . . . . . . . . . . . 14  |-  ( ( R  Po  A  /\  ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) ) )  ->  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )
4140exp45 597 . . . . . . . . . . . . 13  |-  ( R  Po  A  ->  (
x  e.  On  ->  ( w  We  A  -> 
( D  =/=  (/)  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) ) ) )
4241com23 72 . . . . . . . . . . . 12  |-  ( R  Po  A  ->  (
w  We  A  -> 
( x  e.  On  ->  ( D  =/=  (/)  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) ) ) )
4342imp 418 . . . . . . . . . . 11  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( x  e.  On  ->  ( D  =/=  (/)  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) ) )
4443a2d 23 . . . . . . . . . 10  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( x  e.  On  ->  D  =/=  (/) )  ->  ( x  e.  On  ->  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )
4544imp4a 572 . . . . . . . . 9  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( x  e.  On  ->  D  =/=  (/) )  ->  ( (
x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
4645alrimdv 1624 . . . . . . . 8  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( ( x  e.  On  ->  D  =/=  (/) )  ->  A. y
( ( x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
4746alimdv 1612 . . . . . . 7  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  A. x A. y ( ( x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
48 r2al 2614 . . . . . . 7  |-  ( A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  <->  A. x A. y ( ( x  e.  On  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
4947, 48syl6ibr 218 . . . . . 6  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  A. x  e.  On  A. y  e.  x  -.  ( F `
 x )  =  ( F `  y
) ) )
50 ssid 3231 . . . . . . . 8  |-  On  C_  On
518tz7.48lem 6495 . . . . . . . 8  |-  ( ( On  C_  On  /\  A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  ->  Fun  `' ( F  |`  On ) )
5250, 51mpan 651 . . . . . . 7  |-  ( A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  Fun  `' ( F  |`  On ) )
53 fnrel 5379 . . . . . . . . . . 11  |-  ( F  Fn  On  ->  Rel  F )
548, 53ax-mp 8 . . . . . . . . . 10  |-  Rel  F
55 fndm 5380 . . . . . . . . . . . 12  |-  ( F  Fn  On  ->  dom  F  =  On )
568, 55ax-mp 8 . . . . . . . . . . 11  |-  dom  F  =  On
5756eqimssi 3266 . . . . . . . . . 10  |-  dom  F  C_  On
58 relssres 5029 . . . . . . . . . 10  |-  ( ( Rel  F  /\  dom  F 
C_  On )  -> 
( F  |`  On )  =  F )
5954, 57, 58mp2an 653 . . . . . . . . 9  |-  ( F  |`  On )  =  F
6059cnveqi 4893 . . . . . . . 8  |-  `' ( F  |`  On )  =  `' F
6160funeqi 5312 . . . . . . 7  |-  ( Fun  `' ( F  |`  On )  <->  Fun  `' F )
6252, 61sylib 188 . . . . . 6  |-  ( A. x  e.  On  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  Fun  `' F )
6349, 62syl6 29 . . . . 5  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  Fun  `' F ) )
64 onprc 4613 . . . . . 6  |-  -.  On  e.  _V
65 df-rn 4737 . . . . . . . . 9  |-  ran  F  =  dom  `' F
6665eleq1i 2379 . . . . . . . 8  |-  ( ran 
F  e.  _V  <->  dom  `' F  e.  _V )
67 funrnex 5788 . . . . . . . . 9  |-  ( dom  `' F  e.  _V  ->  ( Fun  `' F  ->  ran  `' F  e. 
_V ) )
6867com12 27 . . . . . . . 8  |-  ( Fun  `' F  ->  ( dom  `' F  e.  _V  ->  ran  `' F  e. 
_V ) )
6966, 68syl5bi 208 . . . . . . 7  |-  ( Fun  `' F  ->  ( ran 
F  e.  _V  ->  ran  `' F  e.  _V ) )
70 dfdm4 4909 . . . . . . . . 9  |-  dom  F  =  ran  `' F
7156, 70eqtr3i 2338 . . . . . . . 8  |-  On  =  ran  `' F
7271eleq1i 2379 . . . . . . 7  |-  ( On  e.  _V  <->  ran  `' F  e.  _V )
7369, 72syl6ibr 218 . . . . . 6  |-  ( Fun  `' F  ->  ( ran 
F  e.  _V  ->  On  e.  _V ) )
7464, 73mtoi 169 . . . . 5  |-  ( Fun  `' F  ->  -.  ran  F  e.  _V )
7563, 74syl6 29 . . . 4  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  -.  ran  F  e.  _V )
)
7639, 75jcad 519 . . 3  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( A. x ( x  e.  On  ->  D  =/=  (/) )  ->  ( ran  F  e.  _V  /\  -.  ran  F  e.  _V ) ) )
776, 76syl5bir 209 . 2  |-  ( ( R  Po  A  /\  w  We  A )  ->  ( -.  E. x  e.  On  D  =  (/)  ->  ( ran  F  e. 
_V  /\  -.  ran  F  e.  _V ) ) )
781, 77mt3i 118 1  |-  ( ( R  Po  A  /\  w  We  A )  ->  E. x  e.  On  D  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1531    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   E.wrex 2578   {crab 2581   _Vcvv 2822    C_ wss 3186   (/)c0 3489   class class class wbr 4060    e. cmpt 4114    Po wpo 4349    Or wor 4350    We wwe 4388   Oncon0 4429   `'ccnv 4725   dom cdm 4726   ran crn 4727    |` cres 4728   "cima 4729   Rel wrel 4731   Fun wfun 5286    Fn wfn 5287   ` cfv 5292   iota_crio 6339  recscrecs 6429
This theorem is referenced by:  zorn2lem7  8174
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-suc 4435  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-riota 6346  df-recs 6430
  Copyright terms: Public domain W3C validator