Home New Foundations ExplorerTheorem List (p. 12 of 64) < Previous  Next > Bad symbols? Use Firefox (or GIF version for IE).

Theorem List for New Foundations Explorer - 1101-1200   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremsimp233 1101 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ τ (φ ψ χ)) ζ) → χ)

Theoremsimp311 1102 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ ((φ ψ χ) θ τ)) → φ)

Theoremsimp312 1103 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ ((φ ψ χ) θ τ)) → ψ)

Theoremsimp313 1104 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ ((φ ψ χ) θ τ)) → χ)

Theoremsimp321 1105 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ (θ (φ ψ χ) τ)) → φ)

Theoremsimp322 1106 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ (θ (φ ψ χ) τ)) → ψ)

Theoremsimp323 1107 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ (θ (φ ψ χ) τ)) → χ)

Theoremsimp331 1108 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ (θ τ (φ ψ χ))) → φ)

Theoremsimp332 1109 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ (θ τ (φ ψ χ))) → ψ)

Theoremsimp333 1110 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ζ (θ τ (φ ψ χ))) → χ)

Theorem3adantl1 1111 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
(((φ ψ) χ) → θ)       (((τ φ ψ) χ) → θ)

Theorem3adantl2 1112 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
(((φ ψ) χ) → θ)       (((φ τ ψ) χ) → θ)

Theorem3adantl3 1113 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
(((φ ψ) χ) → θ)       (((φ ψ τ) χ) → θ)

Theorem3adantr1 1114 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
((φ (ψ χ)) → θ)       ((φ (τ ψ χ)) → θ)

Theorem3adantr2 1115 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
((φ (ψ χ)) → θ)       ((φ (ψ τ χ)) → θ)

Theorem3adantr3 1116 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
((φ (ψ χ)) → θ)       ((φ (ψ χ τ)) → θ)

Theorem3ad2antl1 1117 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
((φ χ) → θ)       (((φ ψ τ) χ) → θ)

Theorem3ad2antl2 1118 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
((φ χ) → θ)       (((ψ φ τ) χ) → θ)

Theorem3ad2antl3 1119 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
((φ χ) → θ)       (((ψ τ φ) χ) → θ)

Theorem3ad2antr1 1120 Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.)
((φ χ) → θ)       ((φ (χ ψ τ)) → θ)

Theorem3ad2antr2 1121 Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.)
((φ χ) → θ)       ((φ (ψ χ τ)) → θ)

Theorem3ad2antr3 1122 Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.)
((φ χ) → θ)       ((φ (ψ τ χ)) → θ)

Theorem3anibar 1123 Remove a hypothesis from the second member of a biimplication. (Contributed by FL, 22-Jul-2008.)
((φ ψ χ) → (θ ↔ (χ τ)))       ((φ ψ χ) → (θτ))

Theorem3mix1 1124 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
(φ → (φ ψ χ))

Theorem3mix2 1125 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
(φ → (ψ φ χ))

Theorem3mix3 1126 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
(φ → (ψ χ φ))

Theorem3mix1i 1127 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
φ       (φ ψ χ)

Theorem3mix2i 1128 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
φ       (ψ φ χ)

Theorem3mix3i 1129 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
φ       (ψ χ φ)

Theorem3pm3.2i 1130 Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.)
φ    &   ψ    &   χ       (φ ψ χ)

Theorempm3.2an3 1131 pm3.2 434 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.)
(φ → (ψ → (χ → (φ ψ χ))))

Theorem3jca 1132 Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.)
(φψ)    &   (φχ)    &   (φθ)       (φ → (ψ χ θ))

Theorem3jcad 1133 Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
(φ → (ψχ))    &   (φ → (ψθ))    &   (φ → (ψτ))       (φ → (ψ → (χ θ τ)))

Theoremmpbir3an 1134 Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.)
ψ    &   χ    &   θ    &   (φ ↔ (ψ χ θ))       φ

Theoremmpbir3and 1135 Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) (Revised by Mario Carneiro, 9-Jan-2015.)
(φχ)    &   (φθ)    &   (φτ)    &   (φ → (ψ ↔ (χ θ τ)))       (φψ)

Theoremsyl3anbrc 1136 Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.)
(φψ)    &   (φχ)    &   (φθ)    &   (τ ↔ (ψ χ θ))       (φτ)

Theorem3anim123i 1137 Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
(φψ)    &   (χθ)    &   (τη)       ((φ χ τ) → (ψ θ η))

Theorem3anim1i 1138 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
(φψ)       ((φ χ θ) → (ψ χ θ))

Theorem3anim3i 1139 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
(φψ)       ((χ θ φ) → (χ θ ψ))

Theorem3anbi123i 1140 Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
(φψ)    &   (χθ)    &   (τη)       ((φ χ τ) ↔ (ψ θ η))

Theorem3orbi123i 1141 Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
(φψ)    &   (χθ)    &   (τη)       ((φ χ τ) ↔ (ψ θ η))

Theorem3anbi1i 1142 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
(φψ)       ((φ χ θ) ↔ (ψ χ θ))

Theorem3anbi2i 1143 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
(φψ)       ((χ φ θ) ↔ (χ ψ θ))

Theorem3anbi3i 1144 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
(φψ)       ((χ θ φ) ↔ (χ θ ψ))

Theorem3imp 1145 Importation inference. (Contributed by NM, 8-Apr-1994.)
(φ → (ψ → (χθ)))       ((φ ψ χ) → θ)

Theorem3impa 1146 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
(((φ ψ) χ) → θ)       ((φ ψ χ) → θ)

Theorem3impb 1147 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
((φ (ψ χ)) → θ)       ((φ ψ χ) → θ)

Theorem3impia 1148 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
((φ ψ) → (χθ))       ((φ ψ χ) → θ)

Theorem3impib 1149 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
(φ → ((ψ χ) → θ))       ((φ ψ χ) → θ)

Theorem3exp 1150 Exportation inference. (Contributed by NM, 30-May-1994.)
((φ ψ χ) → θ)       (φ → (ψ → (χθ)))

Theorem3expa 1151 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
((φ ψ χ) → θ)       (((φ ψ) χ) → θ)

Theorem3expb 1152 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
((φ ψ χ) → θ)       ((φ (ψ χ)) → θ)

Theorem3expia 1153 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
((φ ψ χ) → θ)       ((φ ψ) → (χθ))

Theorem3expib 1154 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
((φ ψ χ) → θ)       (φ → ((ψ χ) → θ))

Theorem3com12 1155 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((φ ψ χ) → θ)       ((ψ φ χ) → θ)

Theorem3com13 1156 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
((φ ψ χ) → θ)       ((χ ψ φ) → θ)

Theorem3com23 1157 Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.)
((φ ψ χ) → θ)       ((φ χ ψ) → θ)

Theorem3coml 1158 Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
((φ ψ χ) → θ)       ((ψ χ φ) → θ)

Theorem3comr 1159 Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
((φ ψ χ) → θ)       ((χ φ ψ) → θ)

Theorem3adant3r1 1160 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
((φ ψ χ) → θ)       ((φ (τ ψ χ)) → θ)

Theorem3adant3r2 1161 Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
((φ ψ χ) → θ)       ((φ (ψ τ χ)) → θ)

Theorem3adant3r3 1162 Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
((φ ψ χ) → θ)       ((φ (ψ χ τ)) → θ)

Theorem3an1rs 1163 Swap conjuncts. (Contributed by NM, 16-Dec-2007.)
(((φ ψ χ) θ) → τ)       (((φ ψ θ) χ) → τ)

Theorem3imp1 1164 Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.)
(φ → (ψ → (χ → (θτ))))       (((φ ψ χ) θ) → τ)

Theorem3impd 1165 Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
(φ → (ψ → (χ → (θτ))))       (φ → ((ψ χ θ) → τ))

Theorem3imp2 1166 Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.)
(φ → (ψ → (χ → (θτ))))       ((φ (ψ χ θ)) → τ)

Theorem3exp1 1167 Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
(((φ ψ χ) θ) → τ)       (φ → (ψ → (χ → (θτ))))

Theorem3expd 1168 Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
(φ → ((ψ χ θ) → τ))       (φ → (ψ → (χ → (θτ))))

Theorem3exp2 1169 Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
((φ (ψ χ θ)) → τ)       (φ → (ψ → (χ → (θτ))))

Theoremexp5o 1170 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
((φ ψ χ) → ((θ τ) → η))       (φ → (ψ → (χ → (θ → (τη)))))

Theoremexp516 1171 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(((φ (ψ χ θ)) τ) → η)       (φ → (ψ → (χ → (θ → (τη)))))

Theoremexp520 1172 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
(((φ ψ χ) (θ τ)) → η)       (φ → (ψ → (χ → (θ → (τη)))))

Theorem3anassrs 1173 Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.)
((φ (ψ χ θ)) → τ)       ((((φ ψ) χ) θ) → τ)

Theorem3adant1l 1174 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
((φ ψ χ) → θ)       (((τ φ) ψ χ) → θ)

Theorem3adant1r 1175 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
((φ ψ χ) → θ)       (((φ τ) ψ χ) → θ)

Theorem3adant2l 1176 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
((φ ψ χ) → θ)       ((φ (τ ψ) χ) → θ)

Theorem3adant2r 1177 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
((φ ψ χ) → θ)       ((φ (ψ τ) χ) → θ)

Theorem3adant3l 1178 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
((φ ψ χ) → θ)       ((φ ψ (τ χ)) → θ)

Theorem3adant3r 1179 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
((φ ψ χ) → θ)       ((φ ψ (χ τ)) → θ)

Theoremsyl12anc 1180 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
(φψ)    &   (φχ)    &   (φθ)    &   ((ψ (χ θ)) → τ)       (φτ)

Theoremsyl21anc 1181 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
(φψ)    &   (φχ)    &   (φθ)    &   (((ψ χ) θ) → τ)       (φτ)

Theoremsyl3anc 1182 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   ((ψ χ θ) → τ)       (φτ)

Theoremsyl22anc 1183 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (((ψ χ) (θ τ)) → η)       (φη)

Theoremsyl13anc 1184 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   ((ψ (χ θ τ)) → η)       (φη)

Theoremsyl31anc 1185 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (((ψ χ θ) τ) → η)       (φη)

Theoremsyl112anc 1186 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   ((ψ χ (θ τ)) → η)       (φη)

Theoremsyl121anc 1187 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   ((ψ (χ θ) τ) → η)       (φη)

Theoremsyl211anc 1188 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (((ψ χ) θ τ) → η)       (φη)

Theoremsyl23anc 1189 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (((ψ χ) (θ τ η)) → ζ)       (φζ)

Theoremsyl32anc 1190 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (((ψ χ θ) (τ η)) → ζ)       (φζ)

Theoremsyl122anc 1191 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   ((ψ (χ θ) (τ η)) → ζ)       (φζ)

Theoremsyl212anc 1192 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (((ψ χ) θ (τ η)) → ζ)       (φζ)

Theoremsyl221anc 1193 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (((ψ χ) (θ τ) η) → ζ)       (φζ)

Theoremsyl113anc 1194 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   ((ψ χ (θ τ η)) → ζ)       (φζ)

Theoremsyl131anc 1195 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   ((ψ (χ θ τ) η) → ζ)       (φζ)

Theoremsyl311anc 1196 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (((ψ χ θ) τ η) → ζ)       (φζ)

Theoremsyl33anc 1197 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (φζ)    &   (((ψ χ θ) (τ η ζ)) → σ)       (φσ)

Theoremsyl222anc 1198 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (φζ)    &   (((ψ χ) (θ τ) (η ζ)) → σ)       (φσ)

Theoremsyl123anc 1199 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (φζ)    &   ((ψ (χ θ) (τ η ζ)) → σ)       (φσ)

Theoremsyl132anc 1200 Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
(φψ)    &   (φχ)    &   (φθ)    &   (φτ)    &   (φη)    &   (φζ)    &   ((ψ (χ θ τ) (η ζ)) → σ)       (φσ)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6308
 Copyright terms: Public domain < Previous  Next >